University of Huddersfield Repository

Hemming, Karl, Jamshaid, Faisal and Khan, Musharraf

2-Methylsulfanylbenzo[f]isoquinoline

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/24753/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Keywords: benzoisoquinoline; 1-azetine; naphthalene
Discussion

2-Methylthio-4-(naphth-2-yl)-1-azetine 5 (Scheme 1) has been synthesized by us before [9,10] and used in cycloaddition reactions. Previously, the 1-azetine was obtained by alkylation of the readily available [9,10] thiolactam 7, as shown in Scheme 1. When this reaction mixture is worked up and purified immediately, the 1-azetine is the major product, as already reported [9,10]. However, we have now found that when the crude 1-azetine reaction mixture from the reaction of thiolactam 7 with trimethyloxonium tetrafluoroborate is left overnight rather than used immediately, the 1-azetine is not the isolated product, but rearranges to give 2-methylthiobenzo[f]isoquinoline 4 (35% from 7) instead. A sample of the pure 1-azetine 5 underwent quantitative rearrangement to the isoquinoline 4 after storage in CDCl₃ for one week, indicating that alkylation of the thiolactam 7 is the limiting step.

As shown in Scheme 2, we propose that the 1-azetine 5 undergoes ring-opening to the 2-azadiene 8, a thermal ring-opening process known in 1-azetines [11–13]. Electrocyclic ring closure then occurs onto the more reactive and favored naphthyl 1-position [14–16] as opposed to the alternative, less reactive, dis-favored 3-position. Loss of hydrogen and aromatization then gives the benzo[f]isoquinoline 4.

Experimental

To 4-naphthylazetidin-2-thione 7 [9,10] (300 mg, 1.42 mmol) in dry dichloromethane (10 mL) in a 50 mL round-bottomed flask was added Meerwein’s salt (312 mg, 2.11 mmol) under an atmosphere of
dry nitrogen. The mixture was stirred at room temperature for 1 h and then at reflux for 1 h. The solution was cooled to room temperature and added drop-wise to a 50% aqueous solution of potassium carbonate (10 mL) at −10 °C and left to warm to room temperature overnight. The resulting mixture was filtered through Celite and the organic layer was separated. The aqueous layer was extracted with dichloromethane (2 × 10 mL), and the combined organic extracts were dried (MgSO₄). After filtration the solvent was removed under reduced pressure using a rotary evaporator to give a dark orange oil which was purified by silica column chromatography (hexane/EtOAc; 3:1) to give the product as a light yellow oil (112 mg, 35%), Rf = 0.48. The reaction was monitored by TLC, which was carried out on 0.20 mm Macherey-Nagel Alugram® Sil G/UV254 silica gel-60 F₂₅₄ precoated aluminium plates (Fisher Scientific UK Ltd, Loughborough, UK) and visualisation was achieved using UV light. Column chromatography was performed on silica gel (0.063–0.200 mm, 60 Å) from the same supplier.

Spectroscopic Data

IR νmax (neat, cm⁻¹): 3043 (w), 2955 (m), 1587 (m), 1556 (m), 1493 (m), 1441 (m), 1391 (m), 1144 (m), 1124 (s), 1073 (m), 835 (m), 748 (s).

¹H-NMR: δ (400 MHz, CDCl₃): 9.19 (1H, dd, J = 7.8, 1.6 Hz, ArH), 7.83 (1H, d, J = 8.4 Hz, ArH), 7.80 (1H, dd, J = 7.3, 1.8 Hz, ArH), 7.64–7.56 (3H, m, ArH), 7.53 (1H, d, J = 8.7 Hz, ArH), 7.29 (1H, d, J = 8.4 Hz, ArH), 2.77 (3H, s, Me).

¹³C-NMR δ (100 MHz, CDCl₃): 158.51 (C), 146.18 (C), 134.63 (CH), 133.21 (C), 130.21 (C), 127.34 (CH), 127.04 (CH), 125.99 (CH), 125.41 (CH), 124.50 (CH), 123.72 (CH), 122.53 (C), 120.19 (CH), 13.26 (CH₃).

HRMS (ESI+, m/z) [M + H]^+ for C₁₄H₁₂NS calculated 226.0685, measured 226.0692.

Acknowledgments

We acknowledge Neil McLay for NMR spectroscopy and mass spectrometry.

Author Contributions

Hemming designed the project and is the principal and corresponding author and wrote the text. Khan and Jamshaid conducted the practical work associated with this project and contributed equally.

Conflicts of Interest

The authors declare no conflict of interest.

References and Notes

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).